A variational multiscale method for steady natural convection problem based on two-grid discretization
نویسندگان
چکیده
منابع مشابه
A Two-Level Variational Multiscale Method for Convection-Diffusion Equations
This paper studies the error in, the efficient implementation of and time stepping methods for a variational multiscale method (VMS) for solving convectiondominated problems. The VMS studied uses a fine mesh C 0 finite element space Xh to approximate the concentration and a coarse mesh discontinuous vector finite element space LH for the large scales of the flux in the two scale discretization....
متن کاملA variational multiscale method based on bubble functions for convection-dominated convection-diffusion equation
This work presents a variational multiscale method based on polynomial bubble functions as subgrid scale and a numerical implementation based on two local Gauss integrations. This method can be implemented easily and efficiently for the convection-dominated problem. Static condensation of the bubbles suggests the stability of the method and we establish its global convergence. Representative nu...
متن کاملA Finite Element Variational Multiscale Method Based on Two Local Gauss Integrations for Stationary Conduction-Convection Problems
A new finite element variational multiscale VMS method based on two local Gauss integrations is proposed and analyzed for the stationary conduction-convection problems. The valuable feature of our method is that the action of stabilization operators can be performed locally at the element level with minimal additional cost. The theory analysis shows that our method is stable and has a good prec...
متن کاملA two-grid discretization scheme for the Steklov eigenvalue problem
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...
متن کاملMultiscale Discretization Scheme Based on the Rayleigh Quotient Iterative Method for the Steklov Eigenvalue Problem
This paper discusses efficient numerical methods for the Steklov eigenvalue problem and establishes a new multiscale discretization scheme and an adaptive algorithm based on the Rayleigh quotient iterative method. The efficiency of these schemes is analyzed theoretically, and the constants appeared in the error estimates are also analyzed elaborately. Finally, numerical experiments are provided...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2016
ISSN: 1687-1847
DOI: 10.1186/s13662-016-0815-5